4.Station

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche

1. Station: Fixelemente - 2. Station: Geradentreue und Parallelentreue - 3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue - 4. Station: Längenverhältnistreue - 5. Station: Kreistreue - 6. Station: Zusammenfassung - 7. Station: Übung


4. Station: Längenverhältnistreue

Längenverhältnistreue liegt vor, wenn das Längenverhältnis der Bildstrecke gleich dem der Urstrecke ist.


Porzelt Verhältnistreu.jpg Arbeitsauftrag:

1.Berechne den Streckungsfaktor k.
2.Berechne \overline{A'P'} und \overline{P'B'}.

3.Berechne {\overline{AP}\over\overline{PB}} und {\overline{A'P'}\over\overline{P'B'}}. Runde auf 2 Nachkommastellen.


Um herauszufinden ob deine Lösungen richtig sind, klicke hier die Lösung an:

1. Der Streckungsfaktor k beträgt:

2.0
1.5
3.0

2. A'P' beträgt:

1.4 cm
1.5 cm
1.3 cm

3. P'B' beträgt:

3.0 cm
2.0 cm
2.5 cm

4. {\overline{A'P'}\over\overline{P'B'}} beträgt:

0.47
0.50
1.00

5. {\overline{AP}\over\overline{PB}} beträgt:

0.47
0.52
0.45

Punkte: 0 / 0


Warum ist {\overline{AP}\over\overline{PB}} = {\overline{A'P'}\over\overline{P'B'}}?

Für \overline{AP} kann man auch |k| ∙ \overline{A'P'} und für \overline{PB} kann man |k| ∙ \overline{P'B'} einsetzen.
Daraus folgt: {\overline{AP}\over\overline{PB}} = {{|k|}\over{|k|}}{\overline{A'P'}\over\overline{P'B'}}. |k| kann man rauskürzen, so dass {\overline{AP}\over\overline{PB}} = {\overline{A'P'}\over\overline{P'B'}} gilt.


Ist die zentrische Streckung längenverhältnistreu? (Ja) (!Nein)


Weiter zur 5. Station
Zurück zur 3. Station