Abschlussprüfung 2009B
Abschlussprüfung 2009 - Aufgabe B
| Aufgabe B | |
| B 1.0 |
Leerzeile
| B 1.1 Geben Sie die Definitionsmenge und Wertemenge der Funktion f sowie die Gleichung der Asymptote h an. | | ||
|
| |||
Leerzeile
Leerzeile
A 1.3 Punkte auf dem Graphen zu f sind zusammen mit dem Punkt und den Punkten und die Eckpunkte von Quadraten .
Zeichnen Sie die Quadrate |
Leerzeile
B 1.4 Die Punkte können auf die Punkte abgebildet werden.
Zeigen Sie durch Rechnung , dass der Trägergraph t der Punkte |
Leerzeile
B 1.5 Für das Quadrat gilt: .
Berechnen Sie die Koordinaten des Punktes
|
Leerzeile
B 1.6 Für das Quadrat gilt: Der Punkt liegt auf der Winkelhalbierenden des II. Quadranten.
Ermitteln Sie rechnersich die x-Koordinate des Punktes
|
| Aufgabe A | ||
| A 1.0 |
| |
A 2.1 Berechnen Sie die Koordinaten der Pfeile und für , sowie und für . Runden Sie auf zwei Stellen nach dem Komma.
Zeichnen Sie sodann die Parallelogramme Leerzeile
|
Leerzeile
A 2.2 Zeigen Sie rechnerisch, dass für die Länge der Strecken in Abhängigkeit von gilt:
|
Leerzeile
A 2.3 Begründen Sie, dass die Punkte auf einer Kreislinie um Mittelpunkt O mit dem Radius liegen.
|
A 2.4 Das Parallelogramm ist eine Raute. Diese wird durch die Pfeile und aufgespannt.
Berechnen Sie das zugehörige Winkelmaß
|
| Aufgabe A | |
| A 3.0 |
| A 3.1 Berechnen Sie, wie groß der Inhalt der von Schimmelpilz befallenen Fläche bei der Platte A am Ende des 6. Versuchstages war. Runden Sie auf Quadratzentimeter.
Leerzeile
|
Leerzeile
| A 3.2 Bei der Platte A war der Versuch abgebrochen worden, als der Inhalt der von Schimmelpilz befallenen Fläche einen Quadratmeter erreicht hatte.
Ermitteln sie rechnerisch, am wie vielten Tag dies der Fall war. Leerzeile
|
Leerzeile
| A 3.3 Auch bei der Platte B hatte sich der Inhalt der vom Schimmelpilz befallenen Fläche täglich um einen festen Prozentsatz vergrößert. hier war ein Quadratmeter am Ende des 13. Versuchstages erreicht worden.
Berechnen Sie den Prozentsatz.
|
Leerzeile
Weiter gehts zu Abschlussprüfung 2009 - Aufgabe B
Leerzeile
.

auf zwei Stellen nach dem Komma gerundet.

auf dem Graphen zu f sind zusammen mit dem Punkt
und den Punkten
und
die Eckpunkte von Quadraten
.
für
und
für
in das Koordinatensystem zu 1.2 ein.
können auf die Punkte
besitzt.
Zeichnen Sie den Trägergraphen t der Punkte
]

gilt:
.
.

gilt: Der Punkt
und
!

ist die Symmetrieachse.
.
und
für
, sowie
und
für
. Runden Sie auf zwei Stellen nach dem Komma.
und
in ein Koordinatensystem ein.

in Abhängigkeit von
gilt:
und
.

auf einer Kreislinie um Mittelpunkt O mit dem Radius
liegen.

ist eine Raute. Diese wird durch die Pfeile
und
aufgespannt.





