Berechnungen in Dreiecken: Unterschied zwischen den Versionen
Zeile 134: | Zeile 134: | ||
{| | {| | ||
|[[Bild:Peter_Fischer_Applet.png|35px|''Hier ist ein Applet zur anschaulichen Darstellung'']] | |[[Bild:Peter_Fischer_Applet.png|35px|''Hier ist ein Applet zur anschaulichen Darstellung'']] | ||
− | |<popup name="Applet zur anschaulichen Darstellung"> <ggb_applet height="570" width="700" showMenuBar="false" showResetIcon="true" filename="Peter | + | |<popup name="Applet zur anschaulichen Darstellung"> <ggb_applet height="570" width="700" showMenuBar="false" showResetIcon="true" filename="Peter Fischer_Pyramidegut.ggb"/> |
</popup> | </popup> | ||
|} | |} |
Version vom 27. Juli 2010, 12:21 Uhr
Trigonometrie
Arbeitsauftrag
Die wichtigeste Anwendung von Sinus, Cosinus und Tangens sind Berechnungen an Dreiecken, um Längen und Winkel zu ermitteln. Es gibt Sätze zur Brechnung an
Mit ihrer Hilfe lassen sich fast alle Längen berechnen, denn alle Figuren und auch Körper lassen in Dreiecke zerlegen! |
{{#slideshare:dreiecke-100609154147-phpapp01}}
Falls die Präsentation nicht geladen werden kann, kannst du sie auch als PDF anschauen. Einfach anklicken.
Berechnungen in Dreiecken
Leerzeile
Aufgaben
Nun kommen ein paar Aufgabn aus ehemaligen Abschlussprüfungen zu funktionaler Abhängigkeit und Berechnungen in Dreiecken.
![]() |
Berechne den Winkel ![]() ![]()
|
Leerzeile
Die Punkte Cn können in Abhängigkeit der Abszisse x der Punkte Mn dargestellt werden als ![]() Trägergraphen h der Punkte Cn. Das Ergebnis siehst du im Applet, wenn du x veränderst, die Punkte Cn zeichnen den Trägergraphen. |
Leerzeile
Zeige, dass für den Flächeninhalt A der Dreiecke ![]() ![]()
|
Leerzeile
Die Dreiecke ![]() ![]() |
Leerzeile
Unter den Dreiecken ABnCn gibt es das Dreieck AB5C5, bei dem der Punkt C5 auf der Geraden g liegt.
Ermitteln Sie die Koordinaten des Punktes C5 und überlegen Sie sich, dass das Dreieck AB5C5 den kleinsten Flächeninhalt aller Dreiecke ABnCn besitzt. |
Leerzeile
![]() |
Berechnen sie das größmögliche Maß ![]()
|
Leerzeile
Zeigen Sie, dass für die Streckenlänge ![]() ![]()
|
Leerzeile
Berechnen Sie das Winkelmaß ![]() ![]() ![]() |
Weiter gehts zu Skalarprodukt
Leerzeile