Berechnungen in Dreiecken: Unterschied zwischen den Versionen
Zeile 46: | Zeile 46: | ||
| width="900" style="text-align:left" style="background-color:#FFEC8B;"| '''Aufgabe 1 [[Bild:Peter_Fischer_Papier.png|40px]] ''' | | width="900" style="text-align:left" style="background-color:#FFEC8B;"| '''Aufgabe 1 [[Bild:Peter_Fischer_Papier.png|40px]] ''' | ||
-------- | -------- | ||
− | Funktionale Abhängigkeit aus der ebenen Geometrie. (Abschlussprüfung 2006; Wahlteil; A2 (verändert)). | + | Funktionale Abhängigkeit aus der ebenen Geometrie. (Abschlussprüfung 2006; Wahlteil; A2 (verändert/ergänzt)). |
------------ | ------------ | ||
Die gleichschenklig-rechtwinkligen Dreiecke <math>AB_nC_n \quad</math> bilden eine Dreiecksschar mit dem gemeinsamen Punkt <math>\quad A(0|0)</math>. Auf der Geraden g mit der Gleichung <math>\quad y=-2x+6</math> liegen die Mittelpunkte <math>\quad M_n(x|-2x+6)</math> der Hyptenusen <math>\quad[AB_n]</math>. | Die gleichschenklig-rechtwinkligen Dreiecke <math>AB_nC_n \quad</math> bilden eine Dreiecksschar mit dem gemeinsamen Punkt <math>\quad A(0|0)</math>. Auf der Geraden g mit der Gleichung <math>\quad y=-2x+6</math> liegen die Mittelpunkte <math>\quad M_n(x|-2x+6)</math> der Hyptenusen <math>\quad[AB_n]</math>. | ||
Zeile 80: | Zeile 80: | ||
|Die Punkte C<sub>n</sub> können in Abhängigkeit der Abszisse x der Punkte M<sub>n</sub> dargestellt werden als <math>\quad C_n(3x-6|-x+6)</math>. Ermittle die Gleichung des | |Die Punkte C<sub>n</sub> können in Abhängigkeit der Abszisse x der Punkte M<sub>n</sub> dargestellt werden als <math>\quad C_n(3x-6|-x+6)</math>. Ermittle die Gleichung des | ||
Trägergraphen h der Punkte C<sub>n</sub>. | Trägergraphen h der Punkte C<sub>n</sub>. | ||
− | Das Ergebnis siehst du im Applet, wenn du x veränderst | + | Das Ergebnis siehst du im Applet, wenn du x veränderst zeichnen die Punkte C<sub>n</sub> den Trägergraphen. |
+ | {| | ||
+ | |[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']] | ||
+ | |<popup name="Tipp"> | ||
+ | Verfahren zur Trägergraphermittlung wird in der Präsentation erklärt! | ||
+ | </popup> | ||
+ | |} | ||
+ | |||
|} | |} | ||
Zeile 90: | Zeile 97: | ||
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']] | |[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']] | ||
|<popup name="Tipp"> | |<popup name="Tipp"> | ||
− | + | *36FE in <math>A(x) \quad</math> einsetzen. | |
+ | *Allgemeine Lösungsformel benutzen! | ||
</popup> | </popup> | ||
|} | |} | ||
Zeile 100: | Zeile 108: | ||
{| border="1" | {| border="1" | ||
|Die Dreiecke <math>\quad AB_3C_3</math> und <math>\quad AB_4C_4</math> haben jeweils einen Flächeninhalt von 36 FE. Ermitteln sie die Koordinaten der Punkte C<sub>3</sub> und C<sub>4</sub>. | |Die Dreiecke <math>\quad AB_3C_3</math> und <math>\quad AB_4C_4</math> haben jeweils einen Flächeninhalt von 36 FE. Ermitteln sie die Koordinaten der Punkte C<sub>3</sub> und C<sub>4</sub>. | ||
+ | {| | ||
+ | |[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']] | ||
+ | |<popup name="Tipp"> | ||
+ | *Suche einfache, flächengleiche Figuren! | ||
+ | *Verwende den Punkt M<sub>n</sub>! | ||
+ | </popup> | ||
+ | |} | ||
<quiz display="simple"> | <quiz display="simple"> | ||
{ | { | ||
Zeile 106: | Zeile 121: | ||
</quiz> | </quiz> | ||
|} | |} | ||
+ | |||
<span style="color:#FFFFFF"><big>Leerzeile</big></span> | <span style="color:#FFFFFF"><big>Leerzeile</big></span> | ||
Zeile 112: | Zeile 128: | ||
|Unter den Dreiecken AB<sub>n</sub>C<sub>n</sub> gibt es das Dreieck AB<sub>5</sub>C<sub>5</sub>, bei dem der Punkt C<sub>5</sub> auf der Geraden g liegt. | |Unter den Dreiecken AB<sub>n</sub>C<sub>n</sub> gibt es das Dreieck AB<sub>5</sub>C<sub>5</sub>, bei dem der Punkt C<sub>5</sub> auf der Geraden g liegt. | ||
Ermitteln Sie die Koordinaten des Punktes C<sub>5</sub> und überlegen Sie sich, dass das Dreieck AB<sub>5</sub>C<sub>5</sub> den kleinsten Flächeninhalt aller Dreiecke AB<sub>n</sub>C<sub>n</sub> besitzt. | Ermitteln Sie die Koordinaten des Punktes C<sub>5</sub> und überlegen Sie sich, dass das Dreieck AB<sub>5</sub>C<sub>5</sub> den kleinsten Flächeninhalt aller Dreiecke AB<sub>n</sub>C<sub>n</sub> besitzt. | ||
+ | {| | ||
+ | |[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']] | ||
+ | |<popup name="Tipp"> | ||
+ | C<sub>5</sub> liegt auf dem Trägergraphen und der Geraden g! | ||
+ | </popup> | ||
+ | |} | ||
<quiz display="simple"> | <quiz display="simple"> | ||
{ | { | ||
Zeile 118: | Zeile 140: | ||
</quiz> | </quiz> | ||
|} | |} | ||
+ | |||
<span style="color:#FFFFFF"><big>Leerzeile</big></span> | <span style="color:#FFFFFF"><big>Leerzeile</big></span> |
Version vom 20. August 2010, 11:12 Uhr
Trigonometrie
Arbeitsauftrag
Die wichtigeste Anwendung von Sinus, Cosinus und Tangens sind Berechnungen an Dreiecken, um Längen und Winkel zu ermitteln. Es gibt Sätze zur Brechnung an
Mit ihrer Hilfe lassen sich fast alle Längen berechnen, denn alle Figuren und auch Körper lassen in Dreiecke zerlegen! |
{{#slideshare:dreiecke-100817025839-phpapp02}}
Falls die Präsentation nicht geladen werden kann, kannst du sie auch als PDF anschauen. Einfach anklicken.
Berechnungen in Dreiecken
Leerzeile
Aufgaben
Nun kommen ein paar Aufgabn aus ehemaligen Abschlussprüfungen zu funktionaler Abhängigkeit und Berechnungen in Dreiecken.
Berechne den Winkel , wobei D der Schnittpunkt von g und AC2 ist. Der Punkt C2 besitzt die Koordinaten .
|
Leerzeile
Leerzeile
Zeige, dass für den Flächeninhalt A der Dreiecke in Abhängigkeit von der Abzisse x der Punkte Mn gilt: FE
|
Leerzeile
Die Dreiecke und haben jeweils einen Flächeninhalt von 36 FE. Ermitteln sie die Koordinaten der Punkte C3 und C4.
|
Leerzeile
Unter den Dreiecken ABnCn gibt es das Dreieck AB5C5, bei dem der Punkt C5 auf der Geraden g liegt.
Ermitteln Sie die Koordinaten des Punktes C5 und überlegen Sie sich, dass das Dreieck AB5C5 den kleinsten Flächeninhalt aller Dreiecke ABnCn besitzt. |
Leerzeile
Aufgabe 2
Berechnungen an einer Pyramide ((Abschlussprüfung 2006; Pflichtteil; P2). Das Quadrat ABCD mit ist die Grundfläche einer PyramideABCDS. Die Spitze S liegt senkrecht über dem Eckpunkt A. Der Winkel SCA hat das Maß . Der Punkt liegt auf der Kante mit . Die Punkte liegenauf der Kante , wobei die Winkel das Maß mit haben. |
Berechnen sie das größmögliche Maß .
|
Leerzeile
Zeigen Sie, dass für die Streckenlänge in Abhängigkeit von gilt:
. [Teilergebnis: ] |
Leerzeile
Berechnen Sie das Winkelmaß so, dass die Strecke und gleich lang sind.
|
Weiter gehts zu Skalarprodukt
Leerzeile